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Abstract

Modern environments have huge quantities of con-
textual information that is mainly relevant/useful when
a user/mobile is situated at particular locations. This
paper investigates organizations for exchanging localized
context and surveilling the corresponding areas that mini-
mize bandwidth/energy requirements. We propose a simple
model where context is associated with spatial regions,
cells, and is transferred to/from mobiles as their trajec-
tories traverse the cells. Key elements of the model are
the granularity (e.g., area) of the cells and the amount of
context associated with each cell. The model uses random
tessellations to generate spatial partitions of the space
into cells of varying granularity, and an associated context
content function to capture possible ways in which contex-
tual data associated with a cell might scale. We discuss
a simple taxonomy for such scalings giving a crude idea
of how representative applications might behave. Based
on this model we analyze optimal flat aggregative and
hierarchical organizations for mediating context exchange
revealing some fundamental principles relating the optimal
granularity of cells to different types of applications’
spatial content scaling.

I. Introduction
Context-awareness refers to the ability of applications to

recognize the environment in which they are executing and
is considered a key pre-requisite for ubiquitous computing.
Spatial context content e.g., knowledge of which gas
stations are in the neighborhood or a person’s shopping
preferences in a mall to be used by a targeted advertisement
application, is a special type of contextual information
that exhibits strong locality. Exchanging this type of data
has become increasingly prevalent in ubiquitous comput-
ing. Thus, we believe that optimizing such contextual
exchanges between mobile users and applications is a
problem of primary importance. Our focus in the sequel

is on contextual information that is encoded, stored and
available for use, buttied to an area, i.e., is relevant only
to users/applications at certain spatial locations.

How often should a mobile user interact with its
environment to exchange contextual information? Is it
preferable to frequently exchange small amounts of context
or bulk amounts of context less often? Should location
information come from a shared infrastructure mechanism
or is it better for mobile users to individually calculate their
location? These are the types of questions that we aim to
address in this paper. The answers will depend primarily
on the scaling characteristics of the information exchanged.
Intuitively, one might expect that e.g. temperature mea-
surements, taken from adjacent sensors will be highly
correlated. Therefore, temperature contextual information
need not be acquired from all sensors but only from a
selected subset of them appropriately distanced from each
other. Additionally, the mechanism used to perform the
exchange can complicate the picture e.g. the use of a
wireless protocol adding high packetization overheads to
each message exchanged can impact the most efficient
ways to realize context exchange.

In order to quantitatively assess the relevant merits of
particular architectures for context exchange we propose a
simple, but novel model, capturing the salient features of
such systems, see Fig. 1. We suppose space is partitioned
as a tessellation with each cell corresponding to a region
around natural points of interest e.g. a point of sale in a
retail store, whose context will be treated as a coherent
entity. This is a first-order approximation that can be used
as a guide when designing/optimizing spatial organiza-
tions for context exchange. Similar approaches have been
successfully applied to the problem of network design,
see e.g., [1], [2]. We will in the sequel present a simple
taxonomy capturing different ways in which the amount
of contextual data associated with a cell may be modeled
depending on the character of the associated applications.

Our model assumes a mobile traversing cells of the
tessellation, a surveillance mechanism that is part of the



space’s infrastructure notifying the mobile about these
events and the mobile in response acquires/transmits the
context relevant within each cell. However, each exchange
of contextual data incurs a cost in terms of bandwidth or
energy plus some overhead. Our goal is to find organi-
zations that minimize such costs. In particular, we wish
to determine the granularity that cells should have. For
example, inside a mall one could exchange context at a
floor, shop or even finer granularity. Thus, on one hand,
if we exchange context more frequently from small cells
we exchange only the context that we need, but might
incur a higher overhead. On the other hand, if we exchange
context less frequently from larger cells, a mobile user will
download irrelevant context from fine-grain cells it willnot
actually visit in addition to the useful context that comes
from cells to be visited, but the overhead is amortized. As
such, depending on the manner in which context content
scales and the nature of exchange overheads, one might
expect to find optimal cell granularities.

Related work. Context acquisition is a problem of
recognized importance in the ubiquitous computing com-
munity, see e.g., [3]. However, to the best of our knowledge
this is the first paper to focus on quantitative, albeit
simplified, arguments for spatial context exchange using
formal tools. Geometrical modeling of spaces and their use
in ubiquitous computing is an established idea, see e.g., [4].
Context aggregation is widely recognized as an efficient
policy for coping with the scalability issues challenging
ubiquitous systems, see e.g., [5] and [6].

Contributions and organization. This paper does
not target the CoMoRea09 challenge. Instead, our work
focuses on issues relevant to context scaling modeling
and context management. The key contributions and or-
ganization of this paper might be summarized as fol-
lows. In Section II we formally propose a simple first-
order stochastic geometric model, based on cells from
a random Voronoi tessellation, for a spatial organization
of context exchanges to/from mobile users/terminals. In
order to argue quantitatively about the relative merits of
different architectures, we also propose a taxonomy for
how context content scales with the area of a cell for
various applications. In Section III we consider a flat
organization which aggregates contextual data via cells and
exchanges the associated data as a batch when a mobile
traverses a cell. Our main result is that the case where
context content scales roughly as the square root of the
area, seems to be a critical case in considering optimization
of context exchanges to mobile users. In Section IV we
consider hierarchical organizations for context exchange.
We will show that such hierarchical organizations are
indeed beneficial, but once again the benefits relative to
aggregative organizations depend critically on the context
content scaling characteristics. In Section V we elaborate

on different mechanisms to surveil a space’s cells and
consider their contribution to the energy costs. The paper
concludes with Section VI.

II. Modeling context regions and scaling
Spatial context is usually formed around designated

points of interest in the environment e.g. information about
art exhibits targeted to visitors of a museum. The corre-
sponding regions formed are hardly ever regular, usually
the more the context of a region e.g. the information about
an important exhibit, the bigger the size of the region
formed around it e.g. art masterpieces are often allocated
more space than other exhibits. The resulting partition of
the space is very similar to the Voronoi tessellation formed
by the points of interest as nuclei. To express the multitude
of possible configurations of regions a stochastic approach
is needed.

Stochastic geometry, [7], has recently proven to be a
useful tool for modeling the architecture and performance
of communication networks as well as the role of mobility,
see e.g., [1], [2]. The general idea is to develop simple first-
order models, i.e., which depend on a few parameters, that
capture the salient features of the problem at hand, allow-
ing one to roughly consider optimizing system designs.
This is the character of the model we consider below.

A. Model for context regions
We shall start by considering a non-hierarchical, ‘flat’,

partition of the environment into cells. When a user crosses
a cell’s boundary, an exchange of context takes place.
The cell’s localized context is transferred to the user
and the user’s cell-specific context is transferred to the
application(s) serving the cell. We model such a partition
based on the cells of a Voronoi tessellation induced by a
homogeneous Poisson point process on the plane which
we very briefly describe next, see additionally [7]. The
geometry of spaces found in the real world is far too
complex to be described by a single model. We think
that homogeneous stochastic Voronoi tessellations form a
reasonablefirst-order model controlled by a single param-
eter that is amenable to optimization. The definition of a
homogeneous Poisson processΠ with intensityλ and the
corresponding tessellationV (Π) can be found in [7].

The intensityλ of the Poisson point process captures
with a single parameter the granularity of the cells of a
tessellation – the average area of a cell is given by1

λ
.

Higher values ofλ lead to finer grain cells, while lower
values ofλ correspond to a tessellation with coarser cells.
Additionally, we shall assume that a tessellation induced by
a Poisson processΠf with intensityλf models the natural,
finest grain, spatial organization of context in the environ-
ment. We consider a secondindependentPoisson process,
Πa with rate λa < λf , modeling a coarseraggregative
view to study the potential benefits of exchanging context



from larger contextual cells. For the remainder of the paper
we will refer to these tessellations as the ‘finest grain’ and
‘aggregative’ tessellations respectively, these are exhibited
in Fig. 1.

context
transfer
points

finest grain tessellation aggregative tessellation

Fig. 1. ‘Finest grain’ and ’aggregative’ Voronoi
tessellations modeling contextual spaces.

B. Model for context content of a cell
Each cell of a tessellation is associated with a certain

amount of context to be exchanged. This amount may
depend on the size and shape of the cell. For example,
a cell with bigger area might be expected to have a higher
number of services in it. Or, in the case of a library
or supermarket, contextual content may depend on the
perimeter of the shelves storing books, items, etc.

Definition II.1. (Context content function) The context
content function c : B → R

+ where B denotes the set
of bounded convex sets, models the amount of context
associated with a region in the plane. We assume this
function is translation invariant.

Depending on the specifics of the application consid-
ered, the amount of context content can refer to a cell’s
context transferred to a mobile and/or a mobile’s cell-
specific context that is transferred to the application(s)
serving the cell.

Definition II.2. (Context scaling) ConsiderA ∈ B, we
say a context content functionc(·) is:

• additive iff c(A) =
∑

c(Ai);
• sub-additiveiff c(A) <

∑
c(Ai);

• super-additiveiff c(A) >
∑

c(Ai);

for any partition A1, . . . , An ∈ B of A. Note that since
c()̇ is translation invariant, an additive context content
function must be proportional to the area of a set.

Examples of additive, sub-additive and a super-additive
context content function are:|A|,

√

|A|, and |A|2 where

| · | denotes the area of a set.
In practice, for complex environments context content

functions may grow arbitrarily with cell size, i.e., they
need not fit neatly into the above taxonomy. Our idealized
models for the context content function capture only some
basic characteristics of such systems. In Section III we try
to address the implications of this fact. For mathematical
ease, and to capture a range of possible context content
functions we introduce the following assumption.

Assumption II.3. (Context content model) The context
content of a cell is a function of its shape. Theaverage
context content in a typical cell (as seen by a mobile) in
the aggregative Poisson Voronoi tessellationV (Πa) with
associated intensityλa, is denoted byc(Va) and given by

c(Va) ,
c(Vf )λα

f

λα
a

, whereα > 0,

and c(Vf ) is another constant interpreted as average
context content of a typical cell in the fine grain Poisson
Voronoi tessellationV (Πf ) with intensityλf > λa.

The polynomial model chosen is continuous atλ = λf

and fulfils through a single parameter,α, our stated as-
sumption of expressing various context content scalings
that depend on the shape of an average cell i.e. the
area scaling as1

λ
, the perimeter scaling as1√

λ
, etc. In

practice, the exact scaling of the context content function
can be quite complex but we think it is unlikely to
be exponential. Polynomial functions arereasonablefirst
order bounds for the context content scalings of most of
the use cases we have identified. Inspired by use cases
from the environmental sensor domain we observe that
there is correlation in spatial context. Use cases from the
monitoring, control or social networking domain exhibit
combinatorial context scalings. These observations corrob-
orate our choice of polynomial context content scaling. The
parameterα depends on the context content characteristics
of a particular space/application. Intuitively, the higher the
amount of spatial redundancy in the relevant context, the
lower the value ofα. The special caseα = 1 corresponds
to scaling with no spatial correlation.

Our Poisson-Voronoi model for cells allows for a
stochastic amount of context content in each cell through
our assumption that context is a function of the shape of
each cell. Assumption II.3 models theaverageamount of
context content in an aggregative cell and will be used for
optimizing our chosen cost function.

C. Mobility model
The time instances at which context exchanges happen

depend on the specifics of each application. For example, a
ubiquitous application that serves a particular area and op-
erates based on proximity will perform context exchanges
as soon as the mobile is within a certain range. A mobile



that wishes to acquire the context from an entire space,
will exchange the context as soon as it enters the space,
see Fig. 1. The intensity of such events depends on the
specific characteristics of users’ mobility. We shall assume
a generic homogeneous model for mobility.

Assumption II.4. (User mobility) We assume mobiles are
initially distributed as a Poisson process with intensityλ0,
their motions arestationaryand independentwith mean
velocityv. A user’s trajectory is assumed to be sufficiently
smooth, i.e., continuous and piecewise differentiable. The
context associated with a cell is exchanged when a user
crosses a cell boundary.

Recent advances in mobility modeling suggest that
human mobility might follow something akin to Levy-
random walks, see e.g. [8]. Our assumption on the users’
mobility is fairly generic and acceptable. A more critical
concern with the model is the assumption that the mobility
patterns are independent of the spatial organization of
contextual information. Most likely, mobility and context
content would be linked to actual physical structures. This
is a simplification required to attempt to study some of
the fundamental properties of the problem. Under this
assumption one can show the following fact, see e.g., [1].

Fact II.5. The intensity of cell boundary crossings of a
homogeneous Poisson Voronoi tessellation with rateλ seen
by a typical user moving at mean speedv is

4 ∗ v

π

√
λ crossings/unit time. (1)

Note that the assumption that context exchanges happen
when a mobile crosses a cell boundary is not restrictive as
long as a context exchange occurs at some point when the
mobile is within the cell.

D. Cost model
The nature of the ubiquitous computing paradigm is

such that communication will take place via a wireless
medium. It is plausible to define the cost associated with an
architecture for context exchange based on the bandwidth
or energy expended to perform such exchanges. As afirst-
order approximation, both bandwidth and energy, might
be roughly proportional to the total amount of context
exchanged, including for example, protocol and packetiza-
tion overheads. The following model captures these salient
features.

Assumption II.6. (Cost model) The cost to exchanged
units of contextual data from a cell is

h + O ∗ d. (2)

We assume the energy cost for exchanging context is,
to a first order, proportional to the amount of data and
overhead.

The parameterO can model overheads that are pro-
portional to the amount of data e.g. packet overheads. In
the sequel we will assume without loss of generality that
O = 1. The effect ofO 6= 1 can be evaluated by scaling the
context content function in Assumption II.3. The parameter
h can model fixed protocol overheads.

III. Analysis of Aggregative Tessellations
In this section we explore the benefits of using an ag-

gregative organization to perform bulk context exchanges
versus doing this at the finest grain. Recall that these
two organizations are modeled via a coarse aggregative
tessellationV (Πa) with intensity λa and a fine grain
tessellationV (Πf ) with intensity λf where λa < λf .
Each time a user/mobile crosses a coarse grain cell in
the aggregative tessellation the entire context content as-
sociated with the cell is exchanged. Under the fine grain
organization, users/mobiles see context exchanges as they
cross fine grain cells, and thus see them more often.

The key idea for our analysis is simple. Under our as-
sumption for users’ mobility, the intensity of cell boundary
crossings, and thus of context exchanges, is proportional
to the square root of the intensity of the cells. Each
context exchange corresponds to an average cost including
overheads and data exchanged. Thus, in the case of the
aggregative organization the total cost incurred per unit
time is proportional to

√

λa ∗ (h + c(Va))

with a similar form for the fine grain case. In order to have
cost savings under the aggregative organization versus the
fine grain the following inequality must hold

√

λa ∗ (h + (
λf

λa

)α ∗ c(Vf )) <
√

λf (h + c(Vf )). (3)

The following result, which is derived in [9], summa-
rizes when aggregation is indeed beneficial.

Theorem III.1. Under Assumptions II.3, II.4 and II.6,
an organization for context exchanges based on an ag-
gregative tessellation with intensityλa is beneficial if

• α < 1
2 and λa ∈ (0, λf ). In this case the cost is

strictly increasing inλa thus, the optimal intensity
should be as small as possible.

• α > 1
2 , c(Vf )

h
< 1

2α−1 and λa ∈ (λ̂a, λf ), whereλ̂a

is the maximum solution to the equation

√

λa(h + (
λf

λa

)α ∗ c(Vf )) =
√

λf (h + c(Vf )) (4)

such thatλ̂a < λf . In this case the optimal intensity
for the aggregative tessellation is

λa,opt = (
2α − 1

x
)

1

α ∗ λf



Let x denote the overhead ratiox , h
c(Vf ) , then the

maximum relative cost reduction of acquiring context from
aggregative versus the finest grain organization is given by

|1−
√

λa,opt(h + c(Va))
√

λf (h + c(Vf ))
| = 1− 2α

2α− 1

x

1 + x
(
2α − 1

x
)

1

2α .

(5)

Note that whenα < 1
2 the context content function

scales sub-linearly in the area, which is slow enough that
aggregation always helps. As shown on the top in Fig. 2
in this case any value forλa less thanλf achieves a
cost savings. Note that this is true irrespective of the
values ofh, α, c(Vf ). Of course, the higher the values of
h, α, c(Vf ), the higher the amount of context exchanged,
but asymptotically, the amount of cost per unit time for a
typical user goes to0 asλa decreases.

When α > 1
2 , the context content grows quickly so

more care needs to be taken in using aggregative cells. In
particular, the interval for the intensity of the aggregative
tessellation to be beneficial is now bounded from below,
e.g., compare the lower curves shown on the bottom in
Fig. 2. versus the upper curves where aggregation does not
pay off. Thus, aggregation is beneficial only for a certain
range of values forc(Vf ) that depends on the overhead
h and α. These conditions guarantee the existence of an
optimal intensity for the aggregative tessellation.

Fig. 2 bottom exhibits a case wherec(Vf )
h

> 1
2α−1 , e.g.,

c(Vf ) = 4
3 , α = 4

3 , h = 1. As can be seen the average cost
associated with the aggregative tessellation always exceeds
that of the finest grain organization. Thus, aggregation does
not pay off. By contrast, whenc(Vf )

h
< 1

2α−1 , e.g.c(Vf ) =
1
10 , α = 4

3 , h = 1, there is an interval forλa in which
aggregation is beneficial. The left and right boundaries of
the interval as well as the location of the optimal rate of
the aggregate tessellation are those predicted by Theorem
III.1. The relative cost reduction achieved by aggregation
for the case shown on the bottom in Fig. 2 is25.7%. A
special case worth mentioning isα = 1 i.e. the context
content of a cell grows linearly with respect to its area,
a plausible model for e.g. acquiring context from sensors
whose context content is uncorrelated. For more details see
[9].

Up to now we have assumed that a mobile is interested
in the entire context content of each cell it visits. However,
this need not hold in practice. Indeed, a user/application
interacting with a fine grain organization could select
exactly in which services it has an interest. As a result,
the cost associated with exchanges from the finest grain
tessellation may be lower. A simple enhancement to our
model capturing this phenomenon would be that a context
exchange with a fine grain cell occurs only with probability
p, where p captures the users’ selectivity. Below, we
present the following fact stating the conditions under
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Fig. 2. Context aggregation using aggregative
tessellations when α < 1

2 (top) and α > 1
2

(bottom).

which aggregation can be useful if mobiles download
context selectively.

Fact III.2. A mobile interested in a fractionp, 0 < p < 1
of the context content of each cell it visits can benefit from
aggregation if

p >
2
√

x

1 + x

wherex is as defined in Theorem III.1.

For a proof and a more complete treatment of this case
see [9].

The results of Theorem III.1 can be constrained by the
limited space resources found in typical mobile devices.
Excessively large aggregative organizations may contain
too much context content per cell to be downloaded to
a mobile device. A designer trying to define the optimal
achievable scale of aggregation should choose the biggest
aggregative cell whose context fits in the space provided
by the mobiles to be used. This policy is guaranteed by
the single mode of the cost function in Theorem III.1.

Aggregation pays off in terms of bandwidth/energy
consumption but this comes at the expense of the accuracy
of highly dynamic data. As aggregative cells become larger



and larger, e.g. the readings from highly dynamic sensors
provided to a mobile at the time of crossing an aggregative
cell will be invalid at the time the mobile reaches the
sensors. In practice, a wide class of contextual information
is static e.g. a map of the current floor of the mall, or
slowly varying e.g. readings from a temperature sensor.
A designer trying to decide on the appropriate level of
aggregation has to consider the nature of the contextual
information as well as the average sojourn time of a mobile
through a typical cell. The following fact, demonstrated
in [9], serves as a rule of thumb for deciding when
aggregation is acceptable for dynamic data.

Fact III.3. Aggregation is meaningful for acquiring data
from sensors that change with frequencef if

f = O(
√

λv)

wherev is the average speed of the mobiles.

IV. Hierarchical Organization for Context
Exchange

In this section we focus on applications which have
a sub-additive context content function, i.e.,α < 1 in
Assumption II.3. Recall that sub-additivity likely results
from spatial redundancy or shared context across fine grain
cells. Intuitively, it makes sense to consider a hierarchical
organization, whereby shared context is delivered via a
coarser level of granularity, while context that is specific
to a location is delivered via a fine grained organization.
For example, for the case of a mall discussed in Section I,
the part of the contextual information that is shared among
all stores on the same floor, e.g., locations of emergency
exit points, could be exchangedoncea mobile enters the
floor level while information specific to each store, e.g.,
discounts offered by a store, can be acquired once the
mobile enters a store.

In this section a hierarchical organization for context
exchanges involvesboththe ‘aggregative’ and ‘finest grain’
tessellations introduced earlier, but they are used in a
different manner. In particular, when a mobile crosses a
cell of the ‘finest grain’ tessellation it obtains only the
context data which is unique to that cell. Theshared
context is exchanged with mobiles when they cross cells of
the aggregative tessellation. The idea is to try to minimize
overheads while maximizing the relevant context that is
exchanged to users.

The effectiveness of our proposed hierarchical organi-
zation depends on the average amount of shared context
among fine grain cells of theV (Πf ) tessellation. We esti-
mate the average shared context as follows. A typical cell
from the aggregative tessellationV (Πa) has an average
context contentc(Va), area 1/λa, and will on average
cover λf/λa fine grain cells. The cells covered by an

aggregative cell, have an average context contentc(Vf ) and
an average unique context among their peers denoted by
c(Vf |Va) < c(Vf ), since we operate on theα < 1 regime
and there is spatial redundancy for the context content. A
cell of the Thus, the total context of the aggregative cell
should satisfy

c(Va) =
λf

λa

c(Vf |Va)

︸ ︷︷ ︸

sum of unique

+ [c(Vf ) − c(Vf |Va)]
︸ ︷︷ ︸

shared

,

where the first term is the sum of the unique context of
its constituent fine grain cells, and the second term is the
context shared by the fine grain cells. Denoting the context
shared by fine grain cells bys = c(Vf ) − c(Vf |Va) one
can solve the above equation to obtain:

s =
λf c(Vf ) − λac(Va)

λf − λa

. (6)

Analogous to the previous sections, the cost per unit of
time for a typical user under this hierarchical organization
is now given by

√

λa(h + s) +
√

λf (h + c(Vf ) − s),

where h is the overhead associated with each context
exchange. The first term corresponds to the shared con-
text which is exchanged from aggregative cells while
the second term corresponds to the costs associated with
exchanging context which is unique to the ‘finest grain’
cells. Under this model we can show the following result,
where again we have relegated the derivations to [9].

Theorem IV.1. Under Assumptions II.3, II.4 and II.6, the
hierarchical organization for context exchanges achievesa
cost saving over the aggregative organization if:

α < 1 , λa ∈ (0, λf ) and x ,
h

c(Vf )
<

r2α − 1

r + 1
, g(r)

wherer ,

√
λf

λa
.

Note that if α > 1
2 exchanging context from a hier-

archical organization can lead to a cost savings. Indeed
if α > 1

2 , then limr→∞ g(r) = ∞ so the condition
in Theorem IV.1 is satisfied irrespective of the value of
c(Vf ), h. So it suffices to employ a sufficiently coarse
granularity (λa small enough) for the hierarchical approach
to result in cost savings. Observe on the top in Fig. 3 and
middle in Fig. 3 that the hierarchical approach can reduce
the cost for any value ofc(Vf ) while the aggregative
approach has at best a certain range over which it can
achieve cost reduction.

As α reduces to1
2 , there will be more redundancy in

the contextual information across fine grain cells. Thus,
the hierarchical approach can reduce costs by employing



larger values forλa, i.e. theV (Πa) cells do not need to be
extremely coarse. However, in this case the performance of
the approach based on aggregation also improves – recall
from Theorem III.1 that forα < 1

2 aggregation always
produces savings. Note that if in practice the coarseness
of aggregation one can achieve is constrained, then ag-
gregation may be more cost effective than a hierarchical
organization, see top Fig. 3.
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Fig. 3. Hierarchical vs. aggregative when α >
1
2 , c(Vf ) = 1 (top), α > 1

2 , c(Vf ) = 10 (middle)
and α < 1

2 (bottom).

By contrast, if α < 1
2 exchanging context from a

hierarchical organization may or may not be preferable
to an organization based on aggregation, depending on
the coarseness of aggregate cells one can practically
achieve. From Theorem III.1 we know that forα < 1

2
an aggregative approach always results in cost savings. In
this case the limit of the upper boundg(r) of Theorem
IV.1 goes to 0 as r → ∞. If the average amount of
context for a fine grain cell of theV (Πf ) tessellation is
extremely low or equivalently the overheadh is high then,
x has a high value and there is the possibility that the
hierarchical approach will not produce any cost savings.
But for cases of interest where the overheadh is low or
equivalentlyc(Vf ) is high, i.e., there is a lot of context per
cell, the hierarchical approach can produce savings over
the aggregative approach, see bottom Fig 3. Thus in this
case, a designer should be careful enough to evaluate both
approaches before deciding which one is better. On the
bottom in Fig. 3 we observe that the aggregative approach
results in cost savings for all allowable values ofλa, while
the hierarchical approach needs cells to be coarse enough
to do so. Once cells are coarse enough, the hierarchical
approach produces savings that for the specific values
chosen for the graph on the bottom in Fig. 3 outperform
the aggregative approach.

V. Assessing the Cost of Surveillance in Ubiq-
uitous Environments

Throughout this paper we have implicitly assumed the
existence of a surveillance mechanism informing mobiles
about cell boundary crossings. We envisage two generic
types of surveillance mechanisms.

• A direct mechanism that is part of a space’s infras-
tructure monitoring each cell’s boundary. An airport
or shopping mall with RFID readers installed on the
doors exciting the RFID tags on the mobiles passing
through, would be an example of such a mechanism.

• An indirect mechanism that detects boundary cross-
ings by comparing each mobile’s location to the
location of the cell boundaries. A tracking service
that is part of the infrastructure or self-positioning by
each mobile device can be used to calculate location.
We assume that self-positioning mobile nodes detect
boundary crossings using an a-priori downloaded map
of the cell boundaries.

Let us first consider direct surveillance mechanisms.
We abstract the underlying mechanism by assuming that
the cost to detect a boundary crossing isEd units of
energy/device, e.g., the energy in an RFID reader’s pulse
to read a potential tag. Additionally we letfd denote the
frequency with which the mechanism checks for boundary
crossings, e.g. an RFID reader on a door sends a pulse
every second to detect mobiles, we say thatfd = 1 Hz.
Motivated by practical considerations we note that mobiles



moving from cell to cell pass through designated points
e.g., doors and detectors will have a certain coverage range
so only a fraction,Kd, of the total cell boundary has to
be surveilled directly. The following assumption captures
these elements.

Assumption V.1. We assume that the average power for
a direct surveillance mechanism per unit of area is given
by

2 ∗
√

λ ∗ Kd ∗ fd ∗ Ed. (7)

With this additional assumption the power expended for
surveilling cell boundaries and exchanging context using
an aggregative tessellation with intensityλa is given by

2 ∗
√

λa ∗ Kd ∗ fd ∗ Ed + λ0 ∗
4 ∗ v

π

√

λac(Va). (8)

This in turn can be simplified as
√

λa∗(ĥ+Ôc(Va)) where
ĥ and Ô are appropriate constants. This cost function has
the same form as that considered in Section II, which
leads to the following corollary.

Corollary V.2. Theorem III.1 can be applied for optimiz-
ing the intensity of an aggregative tessellation for context
exchange using direct surveillance. The overhead ratio is
given byx , ĥ

Ôc(Vf )
.

For the indirect surveillance mechanism we define the
frequency with which a mobile acquires location informa-
tion fi and the corresponding energy expendedEi in a
similar way as in the direct case.

Assumption V.3. Under Assumption II.4 the average
power per unit area expended by an indirect surveillance
mechanism to track boundary crossings is

λ0 ∗ fi ∗ Ei. (9)

Observe that the overall system power expended in-
creases linearly with the intensity of the mobiles. Such an
approach would face scalability problems if the number of
mobiles increases significantly as expected in ubiquitous
computing scenarios.

Note that the frequenciesfd, fi, must be high enough to
ensure that a mobile does not ’miss’ acquiring context from
a cell in a timely manner. Lower bounds on the frequencies
for both approaches are given in [9].

For a given aggregative organization, i.e., fixedλa a
designer can consider which surveillance mechanism is
more energy efficient.

Fact V.4. The direct surveillance is more efficient than the
indirect surveillance if

2 ∗
√

λa ∗ Kd ∗ fd ∗ Ed < λ0 ∗ fi ∗ Ei (10)

For services offered on a ‘personalized’ scale i.e.λf ∼
Θ(λ0),

√
λa << λ0 for an aggregative tessellation and the

leverage of the shared infrastructure by a direct surveil-
lance mechanism provides significant gains.

VI. Conclusions and Future Work
This paper is a first attempt at studying the fundamental

characteristics of context exchange and surveillance orga-
nizations for ubiquitous applications. To allow for quanti-
tative arguments we propose a simple stochastic geometric
model that naturally represents the main characteristics of
such systems. The key results show how the effectiveness
of optimal aggregative versus hierarchical organizations
depend on the manner in which context content scales
with area. We also consider how energy costs for direct
and indirect surveillance mechanisms would vary under
such organizations. Clearly, our model has several gross
simplifications that it would be of interest to relax, and
are part of our future work.
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